Consulting & Innovation
Solutions & Technologies
Infrastructure & Operations
Industries
More
Blog
ArvatoSystems_Utilities_Windräder_Vorschau

Artificial Intelligence and Automation

New opportunities for the digital energy industry

Artificial Intelligence for the Digital Energy Industry
05.08.2019
Artificial Intelligence
Utilities

Artificial Intelligence (AI), data science or machine learning (ML) are currently high on the IT roadmap of companies, including the energy industry. The use of these new, data-based applications actually offers great potential for companies. At the same time, it is a growth driver for the entire technology industry.

Facts at a Glance

1.

After more than 50 years of research, Artificial Intelligence has now arrived in the reality of companies thanks to powerful hardware and the volumes of data required.

2.

In the energy industry in particular, the entire value chain benefits from automation through AI.

3.

Network operators are no longer bound to fixed threshold criteria when determining network utilization, but can forecast more precisely with anomaly detection in time series.

4.

90 percent of customer inquiries to companies are standard inquiries. Intelligent chatbots relieve the burden on customer service and make processes more efficient.

5.

In complex, multi-layered power station operations, Artificial Intelligence can be used to determine ideal switching actions and thus save energy.

What is Artificial Intelligence?

AI imitates the human ability to see, hear, analyze and understand - for example for image recognition or natural language processing. Yet it is by no means as new as is often assumed: The first AI applications were developed as early as the 1950s. The term itself comes from an essay by the US computer scientist John McCarthy in 1956.


However, for a long time, the available data ("Big Data") and the necessary powerful hardware were lacking for the breakthrough of AI in companies and markets. Until now: Because in the meantime, the corresponding systems are able to gain very fine, granular insights on the basis of large volumes of data - the stock of which is growing, not least due to digitization. These parallel developments are now enabling viable and mature AI applications in companies for the first time, which can deal better and faster with data and customers.

From Generation to Distribution: Artificial Intelligence in the Energy Industry

2020_Blog_KI in der Energiewirtschaft

In the energy industry in particular, Artificial Intelligence can be used at many points along the value chain. The use of AI is worthwhile, for example, for the mapping of customer inquiries and tickets, in predictive maintenance or in the field of smart meter services.

AI for Network Operation

Network operators, for example, can take advantage of further developments in the field of Artificial Intelligence: On the basis of AI, they can forecast exactly how busy their network will be. An important subdiscipline of AI is used here, machine learning (ML). Machine learning means that IT systems use algorithms to recognize patterns in data sets and can use the insights gained for new questions and solution strategies. The software "learns" independently and continues to develop autonomously.

Fixed threshold criteria vs. anomaly detection in time series

Until now, many network operators have often relied on systems that operate according to fixed threshold criteria for network monitoring. This means that the systems monitor whether the target variables under consideration are within a predefined range of values. If the company wants to permanently monitor an aspect of the network, such as the load flow, it must define fixed threshold values for this purpose that cover a large number of normal states as a whole. This means that state-specific deviations often do not trigger an alarm. Using AI processes, this monitoring is now much more sensitive and flexible: network operators can resolve the fixed threshold values as far as possible. This is because AI automatically identifies when which utilization is to be expected. This is based on time series measurement, which enables a distinction to be made between type days such as weekdays, weekends or hours and minutes. For example, the network load can be very low on Sunday nights, while peak values occur during the morning and evening hours on weekdays.


Based on the data collected - for example, through smart metering - the grid operator can then investigate and systematize behavioral patterns, while at the same time creating load profiles, such as industrial or residential profiles that take into account photovoltaic generation systems, for example. The expected behavior can then be mapped in fine granularity based on the various influencing variables. This also includes general correlations to the outside temperature or the weather.


The anomalies detected in the network are thus no longer based on previously defined threshold values, but on variable environmental parameters. If the value turns out to be lower or higher than expected, the network operator can react according to demand. The service independently learns the typical behavior of the data series, identifies unusual behavior and alerts critical situations at an early stage - the integrated forecasts are used for further planning.

Hello chatbot: AI in customer communication

Digital customer communication across all channels and at all times - this demand on energy supply companies can also be met with the support of Artificial Intelligence and machine learning. Customers want their questions answered quickly - which in fact include recurring standard information in over 90 percent of cases.


It is precisely these frequently asked questions that can be handled automatically by so-called chatbots. A chatbot is a text-based dialog system that allows chatting with a technical system. With increasing computer power, chatbot systems can access ever more extensive data sets more quickly and therefore provide intelligent dialogs for the user. Such systems are also known as virtual personal assistants, which also provide standard information about the company and products upon request.


Machine learning allows the chatbot to automatically classify queries and recognize similar requests. Requests with similar or identical results can then be fully automated.


Chatbots add value to businesses by making many processes much more efficient. Automating more and more tasks means optimized process costs, fewer human errors and 24/7 availability.

Optimization of effectiveness in power station operation

Companies can also rely on AI support in the operation of power plants with their complex system of components. Often, many different components from different manufacturers are used in the technical plants. These individual assets are optimized for themselves and are operated based on the individual maintenance recommendations of the manufacturers. So far, the control of the power plant thus requires consideration of complex dependencies that are individually introduced by the operator.


In the future, using Artificial Intelligence, ideal switching actions can be derived to most effectively meet the current and perspective energy demand. The operator will be supported in his decisions in order to achieve the economically optimal mode of operation for the power plant.

AI of the Future: Automated Business Decisions

The raw material of the future is data - a raw material that is almost abundant, especially in the digital energy industry. In the future, the intelligent processing of this data will become even more of a lever for the economic success of companies in the energy industry. The repertoire of new technological possibilities here offers unique opportunities to automate business decisions in the future and provide future forecasts in real time.


However, AI is not only an opportunity for companies, but also a task that must be prepared for in the long term and strategically. Players in the energy market who succeed fastest and most comprehensively in successfully exploiting the potential of artificial intelligence for their core business will be able to occupy the significantly better position in their markets in the future.

AI applications for the energy industry

Generate added value with AI

Energy & Utilities Industry

Our IT solutions for Utilities

Passenger Forecasts for Local and Long-Distance Traffic

This case shows how Artificial Intelligence can be used to make learning forecasts and predictions for local and long-distance traffic.

AI-based churn management

Data-based churn management lets energy service providers and utilities proactively develop individual supply and support models for customers.

AI in Practice

Are you looking for the most suitable AI deployment scenarios in your company? Let us inspire you here!

Written by

Loseke, Bernd_00292969_kleiner
Bernd Loseke
Expert for the energy and utilities industry